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ABSTRACT. A family of Galerkin finite element methods is presented to accu- 
rately and efficiently solve the wave equation that includes sharp propagating 
wave fronts. The new methodology involves different finite element discretiza- 
tions at different time levels; thus, at any time level, relatively coarse grids can be 
applied in regions where the solution changes smoothly while finer grids can be 
employed near wave fronts. The change of grid from time step to time step need 
not be continuous, and the number of grid points at different time levels can be 
arbitrarily different. The formulation is applicable to general second-order hy- 
perbolic equations. Stability results are proved and a priori error estimates are 
established for several boundary conditions. Our error estimates consist of three 
parts: the time finite difference discretization error, the spatial finite element 
discretization error, and the error due to the projections of the approximated 
solution from old grids onto new grids. 

1. INTRODUCTION 

In dealing with steep wave fronts using finite element methods [3, 8, 10, 14, 
16] one needs to apply very fine grids in order to reduce numerical oscillation, 
since error components that are nonoscillatory with respect to a fine grid are 
usually oscillatory with respect to a coarser grid. However, wave fronts often 
represent a small fraction of the physical domain and a uniformly refined grid 
over the whole domain results in large-size linear systems of algebraic equations. 
This may be computationally expensive, or even impossible to solve, owing to 
the limited capacity of computer memory. Thus it is desirable to apply relatively 
coarse grids in regions where the solution changes slowly and finer grids in 
regions where wave fronts occur. 

When wave fronts propagate, one needs to be assured that the refined grid 
areas vary with the wave fronts. This requires the finite element method hav- 
ing the capability of discretizing the domain differently at different times. This 
should differ from the moving finite element method [2, 4, 11, 17, 18] since 
the latter requires (basically) a fixed number of grid points at all time levels 
and a continuous change in grid. In [24], the author proposed a dynamic fi- 
nite element method for the wave equation which can apply arbitrary grids at 
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any time level (as long as the minimum-angle property of the triangulation is 
satisfied). There, an equivalent first-order system, both in space and in time, 
replaced the second-order wave equation, and was approximated by two mixed 
finite element schemes. Unconditional stability was proved and optimal error 
estimates were obtained. However, the method in [24] does not seem to apply 
to more general second-order hyperbolic equations. 

In this paper we present a family of Galerkin finite element schemes which are 
applicable to nonlinear second-order hyperbolic equations. These schemes have 
the desired property that they allow one to employ dynamic finite elements in 
order to efficiently and accurately resolve sharp moving wave fronts; the grid at 
a time level can be arbitrarily different from that at the previous time level and 
need not change continuously in any fashion, as opposed to the moving finite 
element method. This property is especially desirable for problems in which 
an initial wave pulse splits into left- and right-going waves at later instances of 
time, since a fixed number of finite elements at all time levels cannot work well 
in this case. Also, these schemes have optimal rates of convergence, and many 
of them are unconditionally stable. 

For brevity and clarity, only linear problems will be considered in this pa- 
per. Nonlinear problems can be treated analogously by the argument presented 
herein plus the techniques found in the papers by Wheeler [22] and the au- 
thor [23]. Also, our previous paper [24] will be cited in order to shorten the 
argument. 

In ?2 we shall pose the differential problem and summarize some known 
results. Then, in ?3, we shall define our numerical schemes of grid modification 
and give stability results. In ?4, we prove the error estimates. Finally, in ?5, we 
make some remarks. 

2. NOTATION AND PRELIMINARIES 

Suppose that Q is a smooth bounded domain or a convex polygon in Rd 

with boundary I, and that p(x), a(x) E L??(Q) are bounded above and below 
by positive constants on Q = Q2 U I. Also suppose that u(x, t) satisfies 

(2.1a) 02U - V * (a(x)Vu) = f(x, t) (x, t) e Q x J, 

(2.1b) u(x, O) = uo(X), (x, O) = vo(x), x E 

where J = (0, T] with T being a positive constant. The boundary condition 
satisfied by u is taken to be 

(2.2a) u(x, t) = O, (x, t) E r x J, 

or 

(2.2b) -a(x) 5- = g(x, t) + a1 (x)u + a2(x), (x, t) E rx J, 

where al, a2 are nonnegative functions and 8 is outward normal differenti- 
ation. 

We shall let HP(9i) and HP(I) denote the usual Sobolev spaces on Q and 
r for any real number p. The norm on HP(Q) will be denoted by 11 * IlP and 
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that on HP(F) by I * IP; the subscript will be omitted when p = 0. However, 
the weighted L2 norm in L2(Q) with weight function, e.g., p, will be denoted 
by 11 * IIP, and that in L2(P) by I *IP ,. 

We assume that a1 and a2 are sufficiently regular that multiplication by a, 
or a2 is a continuous operation on H (r); a sufficient condition is that a1 and 
a2 are in Hl+"(I) for d = 1, 2, 3 and any e > 0 [9]. Note that (2.2b) is a 
general boundary condition of which first-order absorbing boundary conditions 
[7, 12, 21] are special cases. 

The standard way to solve the problem (2.1) and (2.2a) is as follows. First 
define a variational formulation: find u(t) E Ho' (Q) with utt E L2(Q) such that 
for t eJ 

0 2u 
(2.3a) (P62 w) + (aVu, Vw) = (f, w), Vw E H (Q) 

au 
(2.3b) u(O) = uo, (O) = vo, 

where 

(f, g) = jf gdx. 

Let Sh C Ho' (Q) be a finite element space. Then the well-known semidiscrete 
scheme is defined as follows: find U(t) E Sh such that for t E J 

(2.4a) (P2 w) + (aVU, Vw) =(f,w), VW E Sh, 

(2.4b) U(O)= Uo, () VO 

where UO, Vo E Sh are some approximations of the initial data uo, vo, respec- 
tively. 

The problem (2.4) is equivalent to the following system of ordinary differen- 
tial equations: find 4(t) E Rm satisfying 

(2.5a) B-dt2 + AX = F, 

(2.5b) 4(?) =0?' dt (?) = i 

ddt 

where 0, 6o, and G1 are respectively the coordinates of U, UO, VO with 
respect to the basis functions {01, 02, ... , qm} of Sh, A = ((aVqi , Vq$)) 
and B = ((pq$i, q$j)) are m x m matrices, and F = [(f, 0i), ..., (f, q$O,,)]T 
is the force vector. 

To discretize the problem (2.5) in time, we partition J as 0 = to < ti < 
< TN = T, and let q = . Denote the approximations of (t,) and dt 

t(t,) by n and t1, respectively. Then the fully discrete scheme reads: find 
Xn+i1 11n+1 E Rm such that 

(2.6a) B 1n+1 
- 

?In + aAXn+i + ( -a)AXn = aFn+l + (1 -a)Fn, 
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(2.6b) Xn+l Xn 
- (fl?ln+l + (1- f)?1n) = ? n =0O, 1, ..,N-1, 

Atn 

(2.6c) o = 0o, ?70 = Oi, 

where Atn = tn+I - tn 5 and a, 11 E [0, 1] are parameters. It is well known 
that the scheme (2.6) is unconditionally stable for a, fi> I and second-order 2 
accurate in time for a = ,B = 1 

The scheme (2.6) can be decoupled very easily. A well-known method in 
the engineering literature, the so-called Newmark method [13, 15], comes from 
(2.6) directly: 
(2.7a) 

B4n+l = Bcn + AtnBnn - Atn(yA y+ + (2-Y)AXn) + + ( n) 

(2.7b) B?in+I = Bnn -Atn(aAEn+i + (1- a)A4n) + Atn(aFn+l + (1-a)Fn). 

The Newmark method is unconditionally stable when a > 2, Y > 4 . Note 
that the matrix B in (2.7) has condition number of size 0(1), and is diagonal 
when piecewise linear interpolation polynomials and appropriate integration 
quadrature rules [6] are applied. Thus, the introduction of the velocity ?I as 
an independent variable does not significantly increase computational work. 
Indeed, the operation count is generally O(mb2) to solve for ?1n+i from (2.7b) 
when ,n+i is known, where m is the dimension of the space Sh and b the 
band width of the matrix B. 

We note that, with v = au, the variational formulation (2.3) is equivalent 
to the following: find u, v E Ho (Q) such that for t E J 

(2.8a) (p w) + (aVu, Vw) = (f, w), Vw E Ho (Q) 

(2.8b) Ua t w (v, w) VW E Ho (Q) 

(2.8c) u(O) = uo, v(O) = vo. 

The discrete schemes (2.6) and (2.7) may be thought of as being obtained di- 
rectly from (2.8). 

For the problem (2.1) and (2.2b), we have a similar variational formulation: 
find u, v E HI(Q) satisfying 
(2.9a) 

Ov 
(P- ,t w) + (aVu, Vw) + (g+aIu+a2v, w) = (f, w), Vw EH(Q), 

(2.9b) O W)u=u(vuw VweH1(Q), 

(2.9c) u(O) = uo, v(O) = vo, 

where 

(f, g)= jfgds. 
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Discrete schemes similar to (2.6) and (2.7) can be constructed from the vari- 
ational form (2.9). 

3. NUMERICAL SCHEMES USING DYNAMIC FINITE ELEMENTS 

In this section we construct dynamic finite element schemes directly from the 
variational formulations (2.8) and (2.9). We recall that the time interval J = 
(0, T] is partitioned as O = to < t< < .<TN= T, and that At, = tn+1 - tn a 
For any function w: Q x J -D R, we denote Wn = w(., tn). 

In order to accurately capture moving singularities such as traveling wave 
fronts, and let the size of the resulting linear systems be manageable, one needs 
to apply fine grids in regions near wave fronts, and relatively coarse grids in 
regions far away from wave fronts. As time goes on, the fine and coarse grid 
regions need to be modified or regenerated dynamically. 

We first consider the problem (2.8). At time t = tn ~ we let Tn = {K} be 
a spatial discretization of the domain Q, and assume that the finite element 
space Sn c Ho' (Q) satisfies the following approximation property: 

inf h2,k+ 
I_ j1 

II 112 
(3.1) WhESn /W 

hIli _ C n,K Hk+1(K) 

JO ,1, VweHk+l(Q), 

where hn, K is the diameter of the element K E Tn and k the order of the 
piecewise interpolation polynomials. The constant C in (3.1) is assumed to be 
independent of n. 

Introduce elliptic and L2 projections of u and v: find RnU(., t), PnV(., t) E 
Sn such that for any t E J 

(3.2) (aV(Rnu-u), Vw) = O, Vw E Sn 

(3.3) (p(Pnv-v) , w) = V bw E Sn. 

By (3.1) we have the following error bounds: 

(3.4a) |IRnu - ullj < c(Z hn, K HIIuII k+1 (K) 0, 1, 
KETn 

(3.4b) IIPnV - vllj < C Z h, K l)IIvIIk+1l(K) ) o1. 
KE Tn 

We are now in a position to define our numerical schemes for the problem 
(2.8), or equivalently, for (2.1) and (2.2a). Let Uo, Vo be initial approximations 
of uo, vo, respectively; we define Un+1, Vn+1 E Sn+1 to be the approximations 
of un+1 and vn+1 satisfying 

(p Vn+1 -Pn+l Vn w) + (aV(aUn+l + ( -a)Rn+l Un), Vw) 

=(()fn++ +l(1- )fnV w), +( WEPSn+1 

(3.5b) Un+1 Rn+1 Un, w) = (fVn+1 + (1-f)Pn+1 Vn,w), VW ESn+i, 
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for n = 0, 1,..., N- I; where a, JJ e [0, 1] are parameters. 
In this numerical procedure, the solutions at the previous time level are first 

projected into the current finite element space, and then used as initial values 
to start a new time stepping. These projections are essential to get convergence 
of our numerical schemes. Note that the coefficient matrices resulting from 
computing the projections P,+I V, and R+ I U, can be utilized in the process 
of forming the stiffness matrix for the scheme (3.5). Thus, not much extra work 
is required to solve the scheme (3.5), compared with the scheme (2.6). Also note 
that when Sn = Sn+1 for all n, this procedure reduces to the standard scheme 
(2.6). It is easily seen that the procedure (3.5) permits a unique solution at 
each time step. Just as the Newmark method is obtained from (2.6), a modified 
Newmark method can be obtained from (3.5). 

Theorem 3.1. The procedure (3.5) is unconditionally stable when a, fi> 2 

Proof. From (3.5b) we see that 

Un+I -Rn+l Un = 9 Vn+I + ( 1- f)Pn+l Vn- 
Atn 

Letting w = (Un+1 - R,+I Un)/Atn in the second term on the left-hand side 
of (3.5a), and w = fiVn+I + (1 - fl)Pn+I Vn for the other terms, we get 

.vn+ 1 -Pn+ 1 Vn (p fnlP+ l V 
Vn+I + ( 1- f)Pn+l Vn ) 

Atn~ ~ ~ ~ ~~~~~t ( 3.6) ~~~+ (aV (a Un+ l + (I 1a)Rn+ I Un ) 5V An+t-n+ 

= (afn+l + (I -a)fn flVn+1 + (1 -fl)Pn+1 Vn). 

When a ,B> I, from (3.6) we easily see that 
1 

(3.7) 2At~ [lE+l- IIPn+iVnII + IIVUn+,II2- IIVRn+1UnII2] 
? C[1f1+2 _ + lIfnI|2 + IIUnVljl + IIPn+1n2II]U 

By the definition of the projections Pn and Rn, (3.7) implies 

(3.8) 11 Vn+l llp-11 Vnllp + IIVUfl+lI |a-IIVUnII n 

< CAt[j/fn+, l2 + |Ifn l2 + | + |vnl I| 

An application of Gronwall's lemma to (3.8) yields 
n 

(3.9) II VnI ||P + IIVUnII i IIVOII + IV UOIIUa + C maxl{At} Z llfil2l 

When f_0, we have 

(3.10) p forn=1, 2 , , N. 

This completes the proof. D 

Now consider the variational formulation (2.9) for the problem (2.1) and 
(2.2b). At time t = tn, let Sn C H' (Q) be a finite element space satisfying 
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(3.1). Define the operator Pn by (3.3), and Rn by the following, instead of 
(3.2), 

(3.11) (aV(R,u-u), Vw) + (a,(R,u-u), w) = 0, Vw E Sn. 

Note that the standard coercivity property does not hold for the problem (3.1 1). 
When a, = 0 a.e. on r, the existence and uniqueness of the solution to equa- 
tion (3.11) and error bounds (3.4) can be derived by seeking a solution RnU 
in the quotient space Sn /{constants}, or Sn /{w I fQ wdx = 0}, and applying 
Poincare's inequality; otherwise, by applying the duality argument of Schatz [5, 
19, 20] and Garding's inequality, we still can derive the error bounds (3.4), un- 
der some assumptions on the regularity of the functions a, a1 and the boundary 
F. 

Again, let U0, V0 be initial approximations of uo, vo, respectively. We 
define Un+j, Vn+l E Sn+j to be the approximations of un+j and vn+1 such 
that for n =0, 1, ... N- 1, 
(3.12a) 

Vn+1 - Pn+1I Vn 
(p Atl-n+n ,W) + (aV(aUn+l + (I-a)Rn+l Un) , VW) 

+(axgn+l + ( 1- c)gn + a, (aUn+l + (1 - a)Rn+l Un) 

+ a2(axVn+l + (1 - a)Pn+l Vn), w) 

= (axfn+l + (1 - a)fn, w), Vw E Sn+j, 

(3.12b) 
- Un+ -Rn+1 Un, w) = (aVn+l + (1- a)Pn+l Vn, w), Vw E Sn+j 
At +Un 

where a E [0, 1] is a parameter. 
By a similar argument to that used in the proof of Theorem 3.1, we have the 

following stability result. 

Theorem 3.2. The procedure (3.12) is unconditionally stable when a E [2, 1] . 

4. ERROR ESTIMATES 

In this section we assume that a, ,B > 2 in the schemes (3.5) and (3.12), 
and adopt the following notation: 

en = Un-RnUn e-n = Rn+1 Un -Rn+lun 

rn = Vn -Pnvn n = Pn+i Vn -Pn+ivn 

en = Un Rnun En =Un Rn+lun 

Jn = Vn -Pnvn 1 n = Pn+ vn - 

and for simplicity choose the initial values { UO, Vo} such that eo = ro = 0. 
First consider the scheme (3.5). Note that (2.8a) can be rewritten as 

avn-i ovn 
(4.1 ) (p(a _ 

+(1 -ca) )n, w) + (aV(aun+ + ( 1-a)un), Vw) 
(4.1) ~ 

at at 
vw_rls 
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By (3.2) we can rewrite (4.1) as 
(4.2) 

avn+1 avn 
( p(a ant+ + -a) ,a tn ), W) +(aV(aRn+ lun+l+ (1-a)Rn+l Un), VW) 

= (afn+l + (1- a)fn S w) , Vw E Sn+j. 

Combining (4.2), (3.5a) and (3.3), we have 

(p rn+ I - rn , W) + (aV(alen+l + (I a)en) , Vw) 
(4.3) Atn 
(4.3) ~~~avn+1 &, Vn+I - V 

=(p(a at +(1-a) a )_p Atn 
) -W ESn+ 

By (3.5b) we have 

en+1 -en Rn+I Un+ -Rn+I Un 

(4.4) Atn Atn 
= f3rn+i + (1 - fl)rn + f3Pn+lvn+l + (1 - /)Pn+ivn. 

Let w = /rn+ I (1 - f) 
' in (4.3) except for the second term on the left-hand 

side, where we let 

en+i -2n + Rn+iun+1 - 
n+ln 

- (flPn+ivn+l + (1 - fl)Pn+lvn); 
Atn Atn 

by (4.4), this is correct. Then we get the following error equation: 

(rn+i 
- nen - e (P~ ~~ f+t ,rn+l + (I l-)r ) + (aV(ae+ -( -a)en), V "+tr Atn nni+( 

Atn 

(p(a avn+ l + (-a) avn ) _ p Vn+I -n , flrn+ l + ( 1-3 )r'n) at +l )at A tvnfln +(l) ) 

(4.5) -(aV(aen+l + (1 - a)en ) 

V( Rn+l un+1- - (/Pn+ivn+l + (1 -f)Pn+l vn+))) 
Atn 

T1 + T2. 

Since a, fi > 2 we easily see that 

rn+l -rn 

2At [(Prn+ rn+i) - (pfn, rn)] 

+ I 
[(f- )(Prn+l rrn+) + (1- 2f)(Prn+l , rn) + (- )(P1 n 5 rn1 

> 2ZK [lr+ip 1rn p2 2An 

and 

(aV(aen+l + (1 - a)en) V enAt- en) > 2 [||Ve +1112 _ ||Ve-I2] 



GRID MODIFICATION FOR SECOND-ORDER HYPERBOLIC PROBLEMS 1503 

Thus, the terms on the left-hand side of (4.5) dominate 

(4.6) 2/t [iirn+ 1- || p-| Pn + Ven? 12 _I- IIVen II2] 

On the other hand, for the terms on the right-hand side we have 

(4.7) ITi 1?< C [IIrn+ II 112+ IIf 112 + 'At3 I2dz + At I _ II2dT] 

(4.8) 

1T21 = (aV(aen+l + (1 - )en), 

En_I - En (13 n+l +(1 )+( At +Iv+fl+ ( 1-3)v U)]) 

< C[IIVen+iII1 + I aVenIl + -t12 V(En+i -C01)a + IIV3n+i11 

+ 1V3n 112 +At' J liv' 2U1I2dT +t 1 11 2] 

Combining (4.5)-(4.8), we have the following error inequality: 

IIrn+iIII2 _ II^nI +1 IIV~ iI - IVenII1 |lr+1 |2 |rn |p + IIVen+I la-ln la 

< C [Atn(llrn+l p rnjp + jV i+Ven+i + jjVna a) +En] 

where 

En= IIEn+1 -EnIIi +Atn(Ik5+liII + Ik5nI I1 
(4.10) 

Atn 
__2 _ 

+ At 2J (nl a1 
II2 + IlViV U 112 + 1 i2 U11 2d 

Now by the definition of the operator Rn+I 

(aV(Rn+ Un - Un) , Vw) = 0 Vw E Sn+j, 

we have 

(aV(en - en), Vw) = (aV(n - En), Vw) Vw E Sn+I. 

Setting w = en and applying the inequality ab < I(a2/c + Eb2) with c= 1 - 
to the term on the right-hand side, we obtain 

(4.11) IIVepnII2 - IIVenI? 1< IIV(En-En)Ia < E (0, 1). 

Similarly, from the definition of the operator Pn+ , 

(P(Pn+l Vn - n), w) =0, Vw E Sn+I 

we see that 

(4.12) 't11nIl - lrnIl? < 1 (5nIp2 VX E (0, 1). 



1504 DAOQI YANG 

Combining (4.9), (4.11) and (4.12) yields 

XIIrn+1112 _- IIrnlI + IIVen+l 112- IIVenI12 

(4.13) < C[Atn(IIrn+I112 + //rn||p + //Ven+1/11 + ||Ven|11) 

+ En + 1 _ < ( ln- En || 5n - 11n6n ll)]n E (0, 1 

This is the error relation in case of implementing different grids at different 
times. However, from the computational point of view, we may want to choose 
some larger fine-grid areas to capture wave fronts for several time steps, and 
change the grid after several time steps only. When the grid is the same at 
times t = tn and t = tn+ , then the error relation becomes 

Irln+ilp - llrn |Ip + ljVen+i a- lVen a1j 

(4.14) < C[Atn(llrn+lII2 + lIrnII2 + IIVen+1II1 + IIVen112) +En] 

Let Mm be the number of changes of spatial discretizations from time t = 

to to time t = tm. From the error relations (4.13) and (4.14), applying the 
argument given in [24], we obtain for 1 < m < N 

.m-l 
2IrmIIp + IIVemI2 < c[ ZAtn(1Irn+iIIp + /jrnllp + //Ve +112l + ||Ven||2) 

(4.15) n=O 

m-l m-1 
+ EEn + Mm Z(IVlEn -Eni + /3n- 31/2)] 

n=O n=O 

By Gronwall's lemma we have 
(4.16) 

lirmllp 112 12Vl < C l En + M2. max { 112 -Eni + /3 - 3//2}J 
IIr~/I + IIe~I/ -n=0 0<n<mn-I 

Note that the straightforward bound of the first term in the definition of En 
would introduce a factor O( I) into our error estimates. Thus, we adopt the 
following procedure: 

IEn+I -EnII2 i I(I- Rn+l)(Un+l - Un)II 

-KtET+ 
hn+I,KIIun+l -Un lHk+I(K)] 

KE Tn+l 

(4. 1 7) [ E hn+l,'K/II J 49 t (zT)dzl/l2l()] 

?tn+l 

< CAtn 1:hn2+IK / lUlHk+I(Kf)dT. 
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By (4.16), (4.17) , (4.10), (3.4) and the triangular inequality we immediately 
have the following theorem. 

Theorem 4.1. Let u be the solution of (2.1) and (2.2a), and v = . Let U 
and V be the solution of the scheme (3.5) with a, / > Then, for sufficiently 
small Atn (O < n < N - 1), we have the error bounds for m = 1,2,..., N, 
(4.18) 

IIVm -VmII2 + IIUm -UmII2 

< C { h2k ltl2 +(,dT nE,+ hlKhIut HIk+I(K)d 
n=O tnKETn+1 

+ EAt2] (hIuttthI2 + hIUtthI2 + IIVutthI2)dT 
n=O tnl 

+ max [ E h2+l K(hI aUn IIHk+2(K) + 11 12Hk+1(K))] n<m [ _n+K1 jft(11Hk+ (K) + 1a1 t |Hk+I (K)) 
KETn+1 

+Af,Vm2 max [ k h 1,(IfI7k12 KhIauln 12 
n<m-1 

n K(Un Hk+ (K) + 1 1 a t IHk+ 
I (K)) 

KE Tn + jun 2 KET} 

where Mm is the number of different finite element discretizations from t = to 
to t=tm. E 

We now estimate the error for the scheme (3.12). Combining (3.12a), (2.9), 
(3.2) and (3.3), we have 

( At , w) + (aV(aen+l + ( - )en) Vw) 

+ (a, (aen+1 + (1 - a)en) + a2(arn+l + (1 - a)rn), w) 

* ~~~(p aVn+l a) (1 a)Vn) _ pVn+l n, W) a9t a t ' Atn w 

+ (a2(a3n+1 + (1-at)n), W), VW ESn+l 

The equation (4.19) is derived just like (4.3). Note that (3.12b) is equivalent to 
the following equation: 

en+ -en Rn+1 Un+ -Rn+1 Un 

(4.20) Atn Atn 
= arn+1 + (1 - a)Pn + aPn+lVn+l + (1 - a)Pn+lvn. 

Letting w = arn+1 + (1 - a)Pn in (4.19) and making use of (4.20), we obtain 
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the error equation 
(4.21) 

(p+ 1v - 
rn , r + (I -a)fn) + (aV(aen+l + (Il-a)en), v 

en+t " e 

+ (a, (aen+ I + (1 - a)en) en+1 en, 
Atn 

+ (a2(arn+l + (1 - a)^n), arn+1 + (1 -)n) 

a9Vn+1 a),vn) _ Vn+i - Vn 

at + (1-At) ) ,nr+i+(1-a)?) 
- (aV(aen+l + (1 - a)en), 

v( Rn+I un+I - Rn+i un - (aPn+lvn+l + ( - a)Pn+lvn))) 
Atn 

- (a,i(aen+li+ l- a)en ), Rn+I Un+I - Rn+IUn -(aPn+lvn+i+(1-a)Pn+lvn)) 
Atn 

+ (a2(a5fn+l + (1 - a)Sn), arn+1 + (1a-)r). 

Using (4.21), the fact that a1, a2 are multipliers on H (r) and the trace 
theorem, and applying the argument used in the derivation of (4.9), we have 
the error inequality 

(4.22) 
IIrn+iI p- IrnIIp + IIVen+1ia - aIVenIIa + Iea+iIal - a,enI 

< C[1tn(IIrn+iII2 + 
IIII + IIVe 

+ iiVenI2 +le +12 + len121 +En] 

where En is defined by (4.10). 
Recall that the projection Rn is defined by (3.11). Similarly to (4.11), we 

have 

411|VenI1 |la11en 112 + XIen 12, - len 12l 

(4.23) < 1 [IV(Cn- CO 11 + len-En 1 E (O I). 

From (4.22), (4.23) and (4.12) we obtain 
(4.24) 

IIrmII2 + IlVemr112 + Iemr12 

m-1 
< C[Z A 1t1(2rn+iIt2 + j|rn||2 + lIVe +11I2 + 11VenI/2 + len+iI21 + lenl2a) 

rAn-i rn-i nIaa a a -n=O 
m-1m- 

+ E En + Mm Z(IIV(Cn - En)112 + En- a, + EI2+IIn5 n )] 
n=O n=O 

The error relation (4.24) is derived just like (4.15). Now an application of 
Gronwall's lemma, the trace inequality and the triangular inequality leads to 
the following theorem. 

Theorem 4.2. Let u be the solution of (2.1) and (2.2b), and v = t. Let U 
and V be the solution of the scheme (3.12) with a > I . Then, for sufficiently -2 Te,frsfiinl 
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small At, (O < n < N - 1), we have the error bounds 
(4.25) 

Vm - VmI2 + IIV(Um - Um)112 ? [the right-hand side terms of(4.18)]. D 

5. REMARKS 

We have presented a family of grid modification finite element schemes and 
derived error estimates for them. In this section we make a few remarks. 

Remark 5.1. The schemes (3.5) and (3.12) can easily include the case in which 
the interpolation polynomials are adjusted dynamically [24]. In particular, the 
hp-version of the finite element methods [1] can be applied at each time step. 

Remark 5.2. The scheme (3.5) has order O(At2) when a = ,B = 2. This can 
be easily proved by modifying the proof of Theorem 4.1. Similarly, the scheme 
(3.12) is of order O(At2) when a = 1 

Remark 5.3. The error estimates in Theorems 4.1 and 4.2 are optimal in the 
energy norm sense when the total number of different finite element discretiza- 
tions is bounded. However, they are one order from being optimal in the L2 
norm sense. 

Remark 5.4. A priori error estimates similar to (4.18) and (4.25) were used in 
[15, ?8.4.4 and ?4.6] to design adaptive algorithms for grid modification and 
time step control. A numerical example based on a posteriori use of a priori 
estimates can be found in [15, Example 9.6]. 

Remark 5.5. Our error estimates in Theorems 4.1 and 4.2 reduce to the standard 
ones when no grid modification is made and a quasi-uniform grid is adopted. 

Remark 5.6. The error estimates in Theorems 4.1 and 4.2 imply that frequent 
changes of the finite element discretization may have some influence on the 
accuracy of the method. Thus, in practical computations, we might want to 
choose larger fine-grid regions to track wave fronts for several time steps, and 
modify the grid after several time steps only. 

Remark 5.7. For nonlinear problems, in order to avoid nonlinearity of the re- 
sulting systems of algebraic equations, second-order schemes such as predictor- 
corrector schemes and extrapolated Crank-Nicolson schemes [22, 23] can be 
constructed. Error estimates follow analogously. 

Remark 5.8. When the problem (2.1) has an absorbing boundary condition 

au au (5.1) a- +a2---=O, (x,t)e=xJ 
Ov Ot )E "xJ 

we may also introduce the weighted elliptic projection Rn as 

(5.2) (aV(R,u-u), Vw) + (R,u-u, w) = 0, Vw E Sn, 

in place of (3.11). This way, we can avoid the duality argument of Schatz 
and get the error bounds (3.4) directly. Besides, the error estimates for the 
scheme (3.12) will have the form (4.18) instead of (4.25). Note that the problem 
(5.2) has more stability than the problem (3.11). Thus, whenever the boundary 
condition (5.1) is given for the problem (2.1), the projection (5.2) should be 
used. 
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Remark 5.9. Wave fronts are usually easier to capture than other critical fea- 
tures, e.g., moving fluid interfaces in reservoir simulation. Note that the wave 
speed can be directly derived from the coefficients in the equation (2.1a). If 
we know where the wave fronts are at a given time, by the wave speed and the 
direction of propagation, we can easily tell where the wave fronts will be at the 
next time. 

Remark 5.10. Grid modification can be incorporated with domain decompo- 
sition methods for second-order hyperbolic problems as easily as for parabolic 
problems [25]. Dynamic domain decompositions can be made according to 
the changing nature of the exact solution. Then uniform fine grids or local 
grid refinements can be applied in subdomains which contain local critical fea- 
tures, and uniform coarse grids or local grid coarsenings can be applied in other 
subdomains. Theoretical analysis and numerical experiments [25] show that 
this technique leads to an effective way for capturing moving local phenomena. 
When parallel computers are used, this technique can also provide a mechanism 
for load balancing. 
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